
Apache ShardingSphere: A Holistic and Pluggable
Platform for Data Sharding

Ruiyuan Li1, Liang Zhang2, Juan Pan2, Junwen Liu3,2, Peng Wang3,2,
Nianjun Sun2, Shanmin Wang2, Chao Chen1, Fuqiang Gu1, Songtao Guo1

1College of Computer Science, Chongqing University 2 SphereEx Lab 3 JD iCity, JD Technology, Beijing, China
{ruiyuan.li, cschaochen, gufq, guosongtao}@cqu.edu.cn, {zhangliang, panjuan}@apache.org,

{zaiyuan49, jimolonely1234}@gmail.com, {sunnianjun, wangshanmin}@sphere-ex.com

Abstract—Traditional relational databases are nowadays over-
whelmed by the increasing data volume and concurrent access.
NoSQL databases can manage large-scale data, but most of
them do not support complete transactions and standard SQL
languages. NewSQL is proposed for both high scalability and
transactional properties with SQL languages support. One type
of NewSQL builds distributed systems from scratch, which is too
radical for some critical applications. The other type of NewSQL,
i.e., data sharding among relational databases, is a better option
for these scenarios.

This paper presents Apache ShardingSphere, the first top-
level open-source platform for data sharding in Apache, which
enables developers to use sharded databases like one database.
Specifically, Apache ShardingSphere integrates six databases,
and designs and implements a complete SQL engine to route
requests correctly and intelligently. Additionally, it encapsulates
three types of distributed transactions, and provides two adaptors
for different scenarios. Moreover, it proposes a novel AutoTable
strategy and a query language, i.e., DistSQL, allowing database
maintainers to easily configure the sharded databases. Further-
more, it provides many other pluggable features to better shard
data. Extensive experiments are conducted using two famous
benchmarking tools, proving that Apache ShardingSphere is
more efficient than eight state-of-the-art systems in our settings.
All experimental source codes are publicly released. More than
170 companies are currently using Apache ShardingSphere.

I. INTRODUCTION

Modern Internet applications require databases to not only
manage massive amounts of data, but to also support highly
concurrent access. For example, during the Double-Eleven
Shopping Festival in 2020, JD [1] saw a transaction volume of
271.5 billion. During the same period, the order creation rate
of Tmall [2] reached 583,000 orders per second. Relational
databases1 are still the main forces of OLTP (Online Trans-
action Processing) nowadays, because they support complete
ACID (i.e., Atomicity, Consistency, Isolation, and Durabil-
ity [3]) transactions and SQL languages. However, relational
databases were originally designed for standalone machines.
They are sometimes overwhelmed by the increasing data
volume and concurrent access. Developers have to repeatedly
adjust the application architectures and redesign the table
structures, which is intractable and costly.

Although NoSQL (Not Only SQL) databases such as
BigTable [4] and HBase [5] are designed for big data and

Chao Chen is the corresponding author.
1To clarify the concepts, in this paper, a database system (such as MySQL)

is called database, and a collection of correlated tables is called data source.

(a) Before Data Sharding

SELECT * FROM t_uesr WHERE uid=0;

SELECT * FROM t_user WHERE uid=1;

uid%2=0

(b) After Data Sharding

uid%2=1

SELECT * FROM t_user WHERE uid=0;

SELECT * FROM t_user WHERE uid=1; DS

DS0

DS1

Fig. 1. Example of Data Sharding.

high concurrent requests, they lack sophisticated transaction
and SQL support, and are not suitable for OLTP scenarios.
NewSQL [6] is proposed to achieve both ACID transactions
and high scalability at the same time. One type of NewSQL
systems such as TiDB [7], CockroachDB [8] and yugabyt-
eDB [9] breaks the limitations of relational database architec-
tures, and builds distributed databases from scratch. However,
they need more verification time, and lack experienced main-
tainers especially for some financial systems. Migrating these
applications to such databases could be very costly, as most
applications are built on relational databases and cannot be
offline. Another type of NewSQL systems, namely sharding
middlewares, is a more modest solution based on existing
relational databases. As shown in Fig. 1, sharding middlewares
route the requests to multiple databases in different machines
according to the query conditions, merge multiple result sets
into a single one, and finally return it to applications, thus
solving the bottlenecks of a single machine. They act as a
proxy between applications and relational databases, and are
transparent to developers. As a result, existing applications can
be transplanted to sharding middlewares without any changes.

It is challenging to build a good database sharding middle-
ware. Firstly, there are many kinds of relational databases with
different database protocols and SQL dialects for different sce-
narios. Supporting all of these databases in a single framework
is not easy. Moreover, there are various SQL types ranging
from simple selection to aggregation to multiple tables join.
Different SQL types need different route rules and result merge
strategies. Secondly, it is intractable to coordinate distributed
transactions among multiple separate databases. Sometimes
a single type of transaction does not fit all cases. Thirdly,
sharding middlewares may encounter the efficiency problem,
as they take some time to forward requests and merge results.
Fourthly, for database managers, it is difficult to configure
sharding rules. They first need to create the underlying tables
manually, and then configure rule strategies case by case.

This paper presents Apache ShardingSphere (abbreviated
as ShardingSphere in the following), the first top-level open-
source database sharding system in Apache. ShardingSphere
addresses all of the challenges mentioned above. The main
goal of ShardingSphere is to reduce the influence of data
sharding, and let users use sharded databases like one database.
It has several notable characteristics:

(1) Holistic. It supports six mainstream relational databases
and any other databases that follow the SQL-92 standard [10].
We design and implement a complete SQL engine for data
sharding, thus any type of SQL can be routed effectively and
intelligently. Besides, it provides three types of distributed
transactions and abundant features derived from data sharding.
To the best of our knowledge, ShardingSphere is the first
system to combine data sharding, XA transaction and BASE
transaction together.

(2) Efficient. In addition to a proxy server, Apache Shard-
ingSphere also provides a JDBC-based adaptor, which can
improve efficiency in most cases. Besides, we propose two
execution modes and an intelligent strategy to select an ap-
propriate execution mode and result merger, which balances
resource control and execution efficiency.

(3) Pluggable and Extensible. ShardingSphere is designed
based on SPI (Service Provider Interfaces) [11] (a service
discovery mechanism in Java) and design patterns [12]. As
a result, more types of databases, features and sharding algo-
rithms can be added easily. Additionally, all of the existing
provided features can be removed or combined freely.

(4) User-friendly. ShardingSphere supports almost all SQL
statements of the integrated databases and hides the details
of distributed transactions. As a result, application developers
can use ShardingSphere and distributed transactions in the
same way of using a standalone database. ShardingSphere also
proposes a novel DistSQL and AutoTable strategy, which helps
database managers configure sharding rules more easily.

More than 170 companies all over the world announced
that they were using ShardingSphere. We conduct extensive
experiments based on two widely-used benchmarking tools,
verifying the powerful efficiency and scalability of Sharding-
Sphere. ShardingSphere is under active development now, and
new significant features are added frequently. This paper is
based on version 5.0.0 that was released on 2021-11-10.
Outline. We present the related works in Section II. The
framework and data flow of ShardingSphere are presented in
Section III. Section IV to Section VII describe each module
of ShardingSphere, respectively. We present the experimental
results in Section VIII, and conclude this paper with future
works in Section IX.

II. RELATED WORKS

Legacy Relational Databases. Relational databases (e.g.,
MySQL and PostgreSQL) have experienced a boom since
the 1970s. They are based on relational data models, and
provide a standard set of SQL interfaces, based on which
many applications can be built conveniently. These relational
databases provide strict ACID transactions, and require strong

consistency for each operation. As most relational databases
are designed for single machines, they are difficult to meet
the requirements of increasing data volume and large-scale
concurrent access.
NoSQL Databases. NoSQL databases relax the constraints of
ACID and relational models. Most of them are designed for
distributed processing, thus they can handle massive data [21–
23]. These NoSQL databases are based on CAP (Consis-
tency, Availability and Partition tolerance) Theorem [24–26],
i.e., it is impossible to achieve all of these three proper-
ties for a distributed system. As the partition is inevitable,
the distributed NoSQL databases can be classified into two
categories: CP NoSQL databases and AP NoSQL databases.
CP NoSQL databases (e.g., MongoDB [27], BigTable [4]
and HBase [5]) seek strong consistency by sacrificing high
availability. AP NoSQL databases, such as DynamoDB [28]
and Cassandra [29], pursue high availability, and only require
to be eventually consistent after an operation. Most NoSQL
databases adopt key-value or document data models, and do
not support standard SQL interfaces. As a result, it is costly
to build applications based on NoSQL databases.
New Architecture Databases. This type of databases pursue
both transactional nature of ACID and high scalability. Many
new architecture databases [7–9, 30–38] are built from scratch.
They adopt a shared-nothing framework, and support multi-
node concurrency control and fault tolerance. For example,
Spanner [30, 38] is the first system that distributes data glob-
ally and supports externally-consistent distributed transactions.
TiDB [7] designs a multi-Raft storage that consists of a row
store and a column store, and proposes a consensus algorithm
to provide consistent replicas. CockroachDB [8] proposes a
novel transaction model to support consistent geo-distributed
transactions. Although these systems have shown advantages
in some cases, they lack familiar maintainers and are not tested
enough. Amazon Aurora [39, 40] belongs to another line of
new architecture databases with a shared-disk framework. It
decouples storage from compute, and pushes several functions
(e.g., logging and recovery) to the storage service. To reduce
the network IOs, Aurora only writes redo logs across the
network. Aurora requires to migrate data to the cloud, which is
not applicable to some proprietary scenarios. For those systems
built on legacy relational databases that have been running for
a long time, the migration cost is also very high.
Database Sharding Middlewares. Database sharding mid-
dlewares provide a more moderate solution to solve the
scalability problem of relational databases. Instead of starting
from scratch, they coordinate transactions and route queries
to multiple database instances. The biggest advantage of
sharding middlewares is that they are transparent to de-
velopers, so legacy applications do not need any changes
to be transplanted to sharding middlewares. Most existing
sharding middlewares [14–17, 19, 20] are only for a single
type of database, and do not support distributed transactions
or only support one type of distributed transaction. Besides,
some of them lack useful tools (e.g., scaling) that are used
frequently for data sharding. Furthermore, most of them only

TABLE I
COMPARING SHARDINGSPHERE AGAINST RELATED DATA SHARDING SYSTEMS (2021.11.01)

System Mode Database Dis-Transaction aProtocol RW-Split Other Features Activeness # Star

ShardingSphere [13] Proxy, MySQL, MariaDB, SQL Server, XA, Local, MySQL, PostgreSQL Yes Shadow, Encrypt, Active 14.8kJDBC Oracle, PostgreSQL, openGuass BASE Scale, Governance
MySQL Proxy [14] Proxy MySQL No MySQL Yes No 7 Years Ago 337

MaxScale [15] Proxy MySQL, MariaDB No MySQL Yes Security, Integration, Active 1.1kCommand Line
Vitess [16] Proxy MySQL XA MySQL No Monitor, Scale Active 12.8k
Citus [17] Proxy PostgreSQL BASE PostgreSQL Yes Scale, Security Active 5.4k

ProxySQL [18] Proxy MySQL, Percona Server, MariaDB, No MySQL Yes Firewall, Monitor Active 4.6kSQLLite Embedded, ClickHouse
bGoldenDB [19] Proxy MySQL BASE MySQL Yes Rebalance, Encrypt, - -Backup, SQL Audit

bTDSQL-MySQL [20] Proxy MySQL XA MySQL Yes Scale, Monitor - -
a Some systems claim that they support MariaDB protocol, which is similar to MySQL protocol.
b GoldenDB and TDSQL-MySQL are two services in the cloud, and we cannot obtain their source codes.

…

Data Sources

SQL Engine

Features Governor

Shard RW-Split Shadow

Encrypt Scale

Parser Router Rewriter Executor Merger

Adaptors

…
Config Manage

Health Detect

ShardingSphere-JDBC ShardingSphere-Proxy

D-transaction

open-
GaussMariaDBOracleSQL

Server
Postgre-

SQLMySQL

Fig. 2. Framework of Apache ShardingSphere.

provide proxy-based mode, i.e., they should be deployed as
single services and forward the requests to the underlying
databases, which brings in significant performance losses.
As a sharding middleware, ShardingSphere supports most
mainstream relational databases, and provides three types of
distributed transactions for different scenarios. In addition to
data sharding, it also provides a wealth of tools to help shard
data better. ShardingSphere can run in two modes, i.e., proxy-
based mode and JDBC-based mode, where the JDBC-based
mode can achieve much better performance. Table I compares
the key features of ShardingSphere with some representative
sharding middlewares.

III. FRAMEWORK AND DATA FLOW

Framework. Figure 2 depicts the overall framework of Shard-
ingSphere, which consists of five components:

(1) Data Sources. ShardingSphere can seamlessly inte-
grate various databases as its underlying storages, as long as
they follow SQL-92 standard [10] and JDBC (Java Database
Connectivity) programming interfaces [41]. Currently, Shard-
ingSphere has integrated MySQL, PostgreSQL, SQL Server,
Oracle, MariaDB and openGauss [42].

(2) Features. ShardingSphere provides many out-of-the-box
features, including but not limited to data sharding, distributed
transaction, read-write splitting, encrypting, shadow DB and
scaling. Many other useful features are added frequently to
ShardingSphere. These features can be added, removed, or

combined freely according to the requirements of applications
(detailed in Section IV).

(3) Governor. There are two main functions of Governor:
1) Configuration Management, which stores and manages the
metadata of data sources, the sharding rules, the configu-
rations, and the running status of ShardingSphere cluster;
2) Health Detection, which monitors the whole cluster to
guarantee high availability (detailed in Section V).

(4) SQL Engine. We design and implement a complete
SQL engine for data sharding. When a SQL request arrives, it
first parses the SQL statement into an abstract syntax tree, and
then generates route paths according to the sharding strategies
and parsing contexts. After that, the SQL engine rewrites the
SQL statement into rightly executable ones in actual databases.
The rewritten SQL statements are sent intelligently to the
underlying data sources, and each data source executes the
allocated SQL statements independently. Finally, the results
acquired from multiple data sources are merged into a single
one set, which is then returned to the request end. Note that
all of the features are pluggable to the SQL engine, and
any feature can be achieved through a single SQL statement
(detailed in Section VI).

(5) Adaptors. To support different scenarios, Sharding-
Sphere provides two adaptors, i.e., ShardingSphere-JDBC and
ShardingSphere-Proxy, based on which many applications
have been developed (detailed in Section VII).
Data Flow. Figure 4 shows the data flow of Sharding-
Sphere. As shown in the left part, in the usage scenarios of
ShardingSphere-JDBC, developers combine ShardingSphere-
JDBC into the business code of Java applications. That is,
ShardingSphere-JDBC and the Java application will run in the
same computer process. ShardingSphere-JDBC encapsulates
the SQL engine with multiple features, and interacts with Gov-
ernor and multiple data sources. This interaction is transparent
to the application developers.

As shown in the right part of Fig. 4, ShardingSphere-Proxy
is a single process between data sources and applications.
Like ShardingSphere-JDBC, ShardingSphere-Proxy incorpo-
rates the SQL engine in it, but it acts as a MySQL or
PostgreSQL database. As a result, ShardingSphere-Proxy can
support applications with any programming language. Besides,

V
er

ti
ca

l
H

o
ri

zo
n

ta
l

Table Sharding Data Source Sharding

t_user t_order
t_user_v0

t_order_v0

t_user_v1

t_order_v1

(a) Original Data Source with Two Tables

t_user

t_order

(b) Data Records in the Split Tables

t_order

oid0

oid1

uid0

uid1

t0

t1

t_user_v0

uid0

uid1

name0

name1

t_order_v0

oid0

oid1

uid0

uid1

t_order_v1

oid0

oid1

t0

t1

t_user_v1

uid0

uid1

age0

age1

gender0

gender1

t_user

uid0

uid1

name0

name1

age0

age1

gender0

gender1

t_user_h0

uid0 name0 age0 gender0

t_user_h1

uid1 name1 age1 gender1

t_order_h0

oid0 uid0 t0

t_order_h1

oid1 uid1 t1

(c) Types of Data Sharding

t_user_h0 t_order_h0

t_user_h1 t_order_h1

t_user_h0

t_order_h0

t_user_h1

t_order_h1

DS

DS

DS DS0

DS0

DS1

DS1

Fig. 3. Illustration of Data Sharding.

Governor

…

DS0

DS1

DSn

Data
Sources

S
ha

rd
in

g
S

ph
er

e-
P

ro
xy

Application

App Code

Application

App Code

MySQL/Postg
reSQL Cli/UI

Java Application

App Code

ShardingSphere-JDBC

Java Application

App Code

ShardingSphere-JDBC

ShardingSphere-JDBC
Usage Scenarios

ShardingSphere-Proxy
Usage Scenarios

Fig. 4. Data Flow of Apache ShardingSphere.

any terminal that is compatible with MySQL or PostgreSQL
protocol (such as MySQL Command Client, MySQL Work-
bench, etc.) can connect to ShardingSphere-Proxy directly,
which is friendly to DBAs (Database Administrators).

As shown in the bottom of Fig. 4, Governor is deployed as
an independent process. It monitors data sources, and receives
messages from ShardingSphere-JDBC and ShardingSphere-
Proxy to maintain configurations.

IV. FEATURES

In this section, we first describe the features of data sharding
and distributed transactions in detail, and then introduce other
features briefly due to the page limitation.
A. Data Sharding
Types of Data Sharding. Data sharding is one of the most
important features in ShardingSphere. It splits the data in one
data source and stores it in multiple tables or data sources
according to certain criteria. ShardingSphere supports two
types of data sharding: Table Sharding and Data Source
Sharding (and a combination of them), each of which has two
methods: Vertical Method and Horizontal Method. Suppose
there is an original data source with two tables t_user and
t_order, whose schemas and data records are shown in
Fig. 3(a), we can perform four types of sharding on the data:

(1) Vertical Table Sharding. Vertical table sharding splits
a table in a data source by grouping its fields. As a result,
a table will be split into several tables, where the split tables

have different schemas. From the view of the table, the original
table is split vertically. For example, as shown in the upper-
left grid of Fig. 3(c), t_user is split into t_user_v0 and
t_user_v1. The schemas and data records of the split tables
are shown in Fig. 3(b). Vertical table sharding can turn wide
tables into narrow tables, thus it is suitable for queries that do
not retrieve too many fields.

(2) Horizontal Table Sharding. Horizontal table sharding
does not change the schema of the original table, but it divides
the data records in a table into two or more tables with
the same schema. For example, as shown in the lower-left
grid of Fig. 3(c), t_user is split into t_user_h0 and
t_user_h1, where t_user_h0 and t_user_h1 have the
same schema with the original table t_user. Each split
table only contains a subset data record of the original table
t_user, as shown in Fig. 3(b).

(3) Vertical Data Source Sharding. This type of sharding
keeps the schemas of tables, but assigns tables to different data
sources according to business logic. For example, as shown in
the upper-right grid of Fig. 3(c), t_user and t_order are
assigned to two separate data sources.

(4) Horizontal Data Source Sharding. Horizontal data
source sharding is the most complex. It is similar to horizontal
table sharding that divides the data records in one table into
two or more tables. However, the split tables are stored in
separate data sources. As shown in the lower-right grid of
Fig. 3(c), the split tables t_user_h0 and t_user_h1 are
stored in two separate data sources.

Vertical data sharding requires to adjust the architectures
and designs from time to time, because the number of data
records in a table will increase constantly and exceed the
threshold of a single machine. That is, vertical data sharding
cannot deal with the fast-changing needs from internet busi-
ness, thus it is not able to really solve the scalability problem.
In contrast, horizontal data sharding can limit the maximum
number of records in a single machine, and can be extended
more freely, so it is regarded as a standard solution to data
sharding. To this end, we focus on horizontal data sharding in
the following of this paper due to the limitation of pages.
Basic Concepts of Data Sharding. In Fig. 1, suppose

AppsApplication Program (AP)

Transaction
Manager

(TM)
Resource

Manager(RM)

(a) DTP Model
XA

Apps
RMAP TM

Sharding
Sphere

(b) ShardingSphere Acts as AP+TM

Transaction Manager (TM)

Transaction
Coordinator

(TC)

(e) BASE Transaction Model

Resource
Manager

(RM)

Seata Transaction Model

ShardingSphere

(d) Local Transaction

Apps ShardingSphere DS0 DS1

commit prepare

prepare

commit

commit

(c) XA Transaction

ok

ok

ok

ok

Phase 1

Phase 2

Apps ShardingSphere DS0 DS1

commit

rollback

commit

commit

rollback

rollback

Fig. 5. Transactions in Apache ShardingSphere.

t_user is divided by the values of uid using horizontal data
source sharding method, where the records with uid%2 = 0
are stored in table t_user_h0 of DS0, and the records with
uid%2 = 1 are stored in table t_user_h1 of DS1 (as shown
in Fig. 3(c)), we have the following basic concepts:

Sharding Key. The field used to determine data sharding
is called sharding key, i.e., uid in this example. Besides the
sharding key with a single field, ShardingSphere also supports
sharding key with multiple fields.

Sharding Algorithm. It is the method that assigns data
records to different tables. In our example, “uid%2” (i.e.,
ModShardingAlgorithm) is the sharding algorithm. Cur-
rently, ShardingSphere presets 10 sharding algorithms [43].
Users can also extend their own sharding algorithms by simply
implementing the interface ShardingAlgorithm. Shard-
ingSphere would automatically load these customized sharding
algorithms through SPI [11] mechanism, which makes Shard-
ingSphere extremely extensible.

Tables. ShardingSphere provides various types of tables for
different data sharding requirements, some of which related to
this paper include:

• Logic Table. A logic table refers to the table that is
identified from a SQL statement. In our example, t_user is
the logic table, which can be seen by developers. The original
table before data sharding is usually the logic table.

• Actual Table. The physical tables that really exist in the
underlying databases are called actual tables. In our example,
t_user_h0 and t_user_h1 are called actual tables. Actual
tables are transparent to application developers.

• Binding Table. If two tables are divided with the same data
sources, same sharding key and same sharding algorithm, they
are binding tables with each other. For example, in Fig. 3(c),
if the original tables t_user and t_order are both divided
by “uid%2”, they have a binding table relationship. Binding
table is very useful in multi-tables correlated queries, as will
be described in Section VI.

Data Node. Data node is the atomic unit of sharding, which
consists of a data source name and an actual table name, e.g.,
DS0.t_user_h1. It maps logic tables to actual tables.
B. Distributed Transaction

ShardingSphere provides three types of distributed transac-
tions for different usage scenarios.
XA Transaction. Most modern standalone relational databases
provide complete transaction support, which satisfies ACID

features. However, it is non-trivial to guarantee these transac-
tion features after data sharding, as each data node can only
manage its own transactions.

X/Open Consortium (i.e., The Open Group [44]) proposed
a DTP (Distributed Transaction Processing) model [45] to
achieve ACID in distributed environments. As shown in
Fig. 5(a), there are three roles in DTP model: 1) Application
Program (AP) defines transaction boundaries, specifies actions
that constitute a transaction, and uses resources; 2) Transaction
Manager (TM) assigns transaction identifiers, monitors trans-
action processes, and takes charge of transaction completion
and failure recovery; 3) Resource Manager (RM) provides
access to shared resources. To achieve XA transactions, an
AP will interact with both RMs and TM. In other words,
application developers need to write many extra codes, which
is very different from when they use a single database.

To flatten the learning curves for application developers,
ShardingSphere encapsulates the detailed logic of DTP model,
and incorporates a transaction manager in it. As a result,
application developers can use XA transactions by the means
of standard transactions, as shown in Fig. 5(b). Here, “Apps”
means user applications to differ from the AP roles in DTP
model, and ShardingSphere acts as both AP and TM. Fig-
ure 5(c) presents the XA transaction in ShardingSphere. When
the user application sends a “commit” request to Sharding-
Sphere, ShardingSphere will record logs and start a 2PC (2-
phase commit) procedure. In phase 1, ShardingSphere sends a
“prepare” message to all RMs (here an RM is a data source)
to check whether this transaction can be committed. If an RM
determines that its own transaction can be committed, it sends
back an “OK” to ShardingSphere; otherwise, it sends a “NO”,
and rolls back what it has done. In phase 2, if all RMs reply
“OK” in phase 1, ShardingSphere notifies all RMs to commit;
otherwise, it sends a “rollback” command to all RMs. RMs
will take actions according to what they have received. If
all RMs reply “OK” in phase 1, but some of them commit
unsuccessfully (although in very few cases, but possibility does
exist such as when the server is down or the network jitters),
ShardingSphere will recover the transaction after the server
restarts or re-commit periodically according to the recorded
logs, which guarantees data consistency.

XA transaction ensures strict ACID characteristics. How-
ever, as it will lock all necessary resources during the ex-
ecution of a transaction, it is only fit for short transactions

with fixed execution time. For long-time transactions, the
performance of XA transactions decreases dramatically. To
this end, ShardingSphere provides two options, i.e., Local
Transaction and BASE Transaction, to address this issue.
Local Transaction. If users do not start the XA transaction,
the XA transaction will be degraded into a 1PC (1-phase
commit) procedure, which we call local transaction. As shown
in Fig. 5(d), when ShardingSphere receives a “commit” or
“rollback” command from the user applications, it will transfer
the command to all data sources directly. Even if some data
source commits fail, ShardingSphere will ignore it. Compared
with XA transactions, local transactions do not need “prepare”
phase, thus can improve the performance significantly.
BASE Transaction. Different from ACID that forces con-
sistency at the end of every operation, BASE [46] is much
more relaxed and accepts data inconsistency for a short period
of time. BASE is the abbreviation of Basically Available,
Soft state and Eventually consistent. We call the transactions
that meet the three requirements BASE transactions. Usually,
BASE transactions can improve the system throughout, as
they do not demand for strong consistency and can reduce
the contention for shared resources.

There are many types of BASE transactions, such as
Sagas [47], TCC (Try-Confirm-Cancel) [48] and Seata (Simple
Extensible Autonomous Transaction Architecture) [49]. Sagas
and TCC transfer the transaction logic from databases to
applications. They require application developers to write extra
codes to compensate every business operation. If an operation
(e.g., buying a ticket) fails, its corresponding compensatory
operation (e.g., refunding the ticket) would be triggered, thus
the overall system could achieve consistency finally. Seata
proposes an AT (Automatic Transaction) mode to generate
compensatory operations automatically. As shown in the grey
box of Fig. 5(e), there are three roles in Seata: 1) Transaction
Coordinator (TC) maintains the status of global and branch
transactions, and drives the global commit or rollback; 2)
Transaction Manager (TM) defines the scope of global trans-
action; and 3) Resource Manager (RM) manages resources and
drives the branch transaction commit or rollback.

Seata AT Mode does not intrude business logic much.
However, it still needs developers to add annotations to their
codes. Besides, it does not provide data sharding ability. To
this end, ShardingSphere encapsulates Seata, and combines
data sharding and BASE transactions together seamlessly. As
shown in Fig. 5(e), the user applications need only to interact
with ShardingSphere in a standard way of database connection.
The BASE transaction in ShardingSphere is a 2PC procedure,
where ShardingSphere performs both roles of TM and RM in
Seata, as shown in Fig. 6. In phase 1, when a user application
starts a BASE transaction, ShardingSphere will first require a
global transaction ID from TC, register local transactions to
TC, and then concurrently ask each data source to start a local
transaction. During each local transaction, the data source will
first save the redo and undo logs, and then commit locally.
After that, ShardingSphere will report the status of the local
transaction to TC. In phase 2, after receiving the command

Apps ShardingSphere DS0 DS1

begin get global transaction ID,
register local transactions

TC

start a local transaction,
save redo&undo logs, commit

start a local transaction,
save redo&undo logs, commit

delete redo&undo logs
(restore data by redo&undo logs)

delete redo&undo logs
(restore data by redo&undo logs)

Phase 1

Phase 2

commit? (rollback?)

report

reportcommit
(rollback)

ok

Fig. 6. BASE Transactions in Apache ShardingSphere.

from the user application, ShardingSphere will check the status
with TC. If all local transactions are committed successfully,
each data source will delete the redo and undo logs. Otherwise,
each data source will restore the data by redo and undo logs.

Currently, for compatibility with relational database proto-
cols, the “commit” or “rollback” commands are triggered by
Apps, and the result of each request is returned synchronously.
These make BASE transactions have to wait for all data
sources to complete their local transactions. In our future work,
we plan to support asynchronous return of results, in which
Apps only submit SQL statements to ShardingSphere, and
ShardingSphere will guarantee BASE transactions automati-
cally. This can improve the performance tremendously.
C. Other Features

Apart from data sharding and distributed transactions,
ShardingSphere also provides many other useful features,
including but not limited to: Read-Write Splitting [50], En-
crypting, Shadowing (i.e., creating a shadow database and
routing the corresponding test SQL to it), Scaling, Circuit
Breaking and Throttling. All of these features are transparent
to application developers, as ShardingSphere can intelligently
identify necessary information from the standard SQL state-
ments. We design and implement these features in a modular
way. As a result, they can be added, removed, or combined
with data sharding freely according to usage scenarios. More
information can be found in our user manual [13].

V. GOVERNOR

In this section, we introduce the details of Governor, includ-
ing configuration management and health detection.
A. Configuration Management

The configuration information is stored in Apache
ZooKeeper [51], a mature and powerful distributed coordina-
tion system that provides efficient memory management and
distributed lock services. Most existing sharding middlewares
require users to configure the sharding rules by writing config-
uration files manually, which is not friendly to developers, as
they are used to operating data through SQL. To this end, we
propose a novel DistSQL (Distributed SQL) that allows users
to configure ShardingSphere in a way of using a database.
DistSQL is divided into RDL, RQL and RAL:

(1) RDL (Resource & Rule Definition Language). It adds,
alters or drops the resources and rules. For example, to add or
alter sharding rules, we can use the following SQL statement:
CREATE|ALTER SHARDING TABLE RULE t_user_h (
RESOURCES(ds0, ds1), SHARDING_COLUMN=uid,

TYPE(NAME=hash_mod,

PROPERTIES("sharding-count"=2)));

Here, we propose a new AutoTable concept. Traditionally,
to perform data sharding, the users should create the physical
tables first, and then configure the sharding rules manu-
ally based on these physical tables. In the statement above,
AutoTable allows users to not care about which databases
store the tables. All they need do is to tell ShardingSphere
what the data sources are and how many shards should be.
ShardingSphere would calculate the data distribution, create
the physical tables in the underlying data sources, and bind
the logic tables to actual tables intelligently. In this example,
ShardingSphere will automatically create two physical tables
t_user_h0 and t_user_h1 in ds0 and ds1, respectively.
AutoTable reduces the cost of data sharding further.

(2) RQL (Resource & Rule Query Language). It queries
and displays existing resources and rules. For example, we
can use the following SQL statement to list all sharding rules:
SHOW SHARDING TABLE RULES;
(3) RAL (Resource & Rule Administration Language). It

is responsible for the added-on administrator features, such
as switching transaction types and scaling. For example, to
switch the transaction types, we can simply use:
SET VARIABLE transaction_type = <type>;

where <type> could be “LOCAL”, “XA” or “BASE”.
Note that the configurations of all provided features can be

achieved through DistSQL. DistSQL breaks the boundary be-
tween middlewares and databases, thus allowing developers to
use ShardingSphere just like a database. For more information
about DistSQL, please refer to [13].
B. Health Detection

To guarantee high reliability, we can set up multiple
ShardingSphere-Proxy instances with load balancing tools,
and integrate mature primary-secondary high available frame-
works (e.g., MGR (MySQL Group Replication) and Or-
chestrator [52]) for the underlying databases. Governor
launches a thread to check periodically the statuses of each
ShardingSphere-Proxy instance and the underlying databases.
If one ShardingSphere-Proxy is down or the primary nodes
are changed, Governor would change the configurations auto-
matically, which ensures the system still work correctly.

VI. SQL ENGINE

ShardingSphere designs and implements a complete SQL
engine based on ANTLR [53] for data sharding and other
features. As a result, all features in ShardingSphere can be
achieved by a single SQL statement.
A. SQL Parser

The SQL parser of ShardingSphere is not fundamentally
different from that of other databases. It converts the SQL
statement into an AST (Abstract Syntax Tree). However, to

support various underlying databases, we provide SQL dialect
dictionaries of different types of databases in it.
B. SQL Router

SQL router matches logical SQL statements to data nodes
based on the parsing results. There are two main route strate-
gies: 1) Broadcast Route and 2) Sharding Route.
Broadcast Route. If the logical SQL statements do not contain
sharding keys, they will be broadcast to all data nodes. These
SQL statements could be: 1) DQL (Data Query Language)
and DML (Data Manipulation Language) that do not have
sharding keys, which should be avoided if possible; 2) DDL
(Data Definition Language), DCL (Data Control Language)
and TCL (Transaction Control Language). We only focus on
data sharding in this paper, so please refer to [13] for more
details about broadcast route.
Sharding Route. For those SQL statements that contain shard-
ing keys, we can do more things to reduce the computational
costs and accelerate the queries by sharding route. Sharding
route can be further divided into two main sub-strategies:

(1) Standard Route. If a request only involves one logic
table or binding tables, we use standard route strategy. Here,
if the sharding key operator in the logical SQL statement is
“=”, the route result will fall into a single data node; but if
it is “BETWEEN” or “IN”, the route result could fall in more
data nodes, thus the logical SQL statement is converted into
one or more real SQL statements. For example, if t_user is
horizontally sharded into t_user_h0 and t_user_h1, the
route result of “SELECT * FROM t_user WHERE uid
IN (1, 2)” will be:
SELECT * FROM t_user_h0 WHERE uid IN (1,2);

SELECT * FROM t_user_h1 WHERE uid IN (1,2);

If the SQL statement joins binding tables, and the join
conditions involve sharding key equality, we can optimize for
that, since the entries with the same sharding key will be
assigned to the same data node. For example, given:
SELECT * FROM t_user u JOIN t_order o

ON u.uid = o.uid WHERE uid IN (1,2);

the route result would be:
SELECT * FROM t_user_h0 u JOIN t_order_h0 o
ON u.uid = o.uid WHERE uid IN (1,2);

SELECT * FROM t_user_h1 u JOIN t_order_h1 o

ON u.uid = o.uid WHERE uid IN (1,2);

(2) Cartesian Route. If the SQL statement contains two or
more tables and these tables do not have binding relationship,
to ensure correct results, we use Cartesian route, i.e., the
joint query between non-binding tables needs to be split into
Cartesian product combination. For example, if t_user and
t_order are not binding tables, the SQL statement given in
the previous example will be routed to:
SELECT * FROM t_user_h0 u JOIN t_order_h0 o
ON u.uid = o.uid WHERE uid IN (1,2);

SELECT * FROM t_user_h0 u JOIN t_order_h1 o
ON u.uid = o.uid WHERE uid IN (1,2);

SELECT * FROM t_user_h1 u JOIN t_order_h0 o
ON u.uid = o.uid WHERE uid IN (1,2);

SELECT * FROM t_user_h1 u JOIN t_order_h1 o

ON u.uid = o.uid WHERE uid IN (1,2);

Cartesian route has a relatively low performance, so we
recommend to bind tables that would be joined.
C. SQL Rewriter

The SQL statements written by developers face logic data
sources and tables, so they cannot be executed directly in
actual data sources. SQL rewriter transforms logical SQL to
executable SQL. It consists of two parts:

(1) Correctness Rewrite. It rewrites identifiers (e.g.,
changing the table name from t_user to t_user_h0 in
the previous example), derives columns (e.g., if the data
is needed by the following result merger, but not returned
through the logical SQL), revises pagination (as the pagination
data from multiple data sources is different from that of one
single data source), and splits batched insert (i.e., when using
batched insert SQL that contains sharding keys like “INSERT
INTO t_order (oid, xxx) VALUES (1, ’xxx’),
(2, ’xxx’)”, the SQL should be rewritten to avoid writing
excessive data). Here is an example of deriving columns:
given a SQL “SELECT oid FROM t_order ORDER BY
uid”, as the selected item does not contain the column
uid required by result merger, it needs to be rewritten
to: “SELECT oid, uid AS ORDER_BY_DERIVED_0
FROM t_order ORDER BY uid;”

(2) Optimization Rewrite. To improve performance with-
out influencing correctness, we can further optimize the SQL
with the following two methods: 1) Single Node Optimization.
If the SQL is routed to a single data node, it is unnecessary
to derive columns, revise pagination and split batched insert
mentioned before any more; 2) Stream Merger Optimization.
It adds “ORDER BY” to the SQL that contains only “GROUP
BY”, which turns memory merger to stream merger (see
Section VI-D). We will describe it in detail in Section VI-E.
D. SQL Executor

SQL executor sends the rewritten SQL statements to the
underlying data sources, which is not simply through JDBC,
but focuses on the balance among data source connections,
memory consumption and the maximum concurrency.

On one hand, the connection number of an application
should be limited, to prevent the application from occupying
excessive resources and influencing the normal use of other
applications. In this case, if the connections available are less
than the queried data nodes, we should load all result data
into memory for merging, which is called Memory Merger.
On the other hand, if we maintain an independent connection
for each data node, we can improve the query efficiency by
executing the SQL concurrently, and avoid loading all result
data into memory through database cursors, which is called
Stream Merger.

SQL executor proposes two connection modes to auto-
matically balance resource control and execution efficiency:
1) Memory Strictly Mode, which considers more memory
usage and does not restrict the connection number of one oper-
ation. In this mode, we prefer stream merger to avoid memory
overflow or frequent garbage recycle; 2) Connection Strictly
Mode, which strictly restricts the connection consumption of

each operation. This mode can use memory merger only.
However, it is hard for users to select the proper connection

mode. Besides, even in the same application, different queries
may fit different modes. To this end, we propose an automatic
execution engine, which determines an appropriate connection
mode automatically for each query. As shown in Fig. 8, there
are two phases of our automatic execution engine:

(1) Preparation Phase. In this phase, we first group the
route & rewrite results by physical data sources. Then, we
decide the connection mode of each data source according to:

θ = ⌈NumOfSQL÷MaxCon⌉ (1)

where NumOfSQL is the number of rewritten SQL state-
ments routed to this data source, and MaxCon is a user-
configured parameter that means the maximum connections a
data source can use for a query. θ is the number of SQLs that
a connection executes. If θ > 1, we must choose connection
strictly mode and memory merger, as a connection cannot hold
results for multiple SQLs. Otherwise, we can select memory
strictly mode and stream merger. Note that we determine the
connection mode in a data source instead of in a query, which
can achieve a finer-grained optimization.

Next, we get the required connections and create execution
units. However, we must be careful enough as there could be
deadlocks. Suppose there are two queries A and B, and each
of them requires two connections con1 and con2 in the same
data source. If A has got con1 but is waiting for con2, and
B is holding con2 but waiting for con1, a deadlock emerges.
To avoid this, we get all required connections for a query
atomically by adding a lock to the data source. But we do
more to reduce locking times: 1) if θ = 1, we will not lock
data source as there could not be two queries waiting for each
other; 2) we do not lock data sources if we use connection
strictly mode and memory merger, as the connections will be
released after the data is loaded into memory.

(2) Execution Phase. In this phase, the execution unit in a
group will be sent to the corresponding underlying data source
together. The data sources execute the SQLs parallelly, and
send event messages for distributed transactions or monitoring.
Finally, the execute result set will be sent to the next module.

E. Result Merger

Result merger combines multiple result sets from differ-
ent data sources into one, and returns the result to user
applications. As discussed in Section VI-D, there are two
mergers, i.e., memory merger and stream merger. Compared
with memory merger, stream merger consumes less memory,
and it acts the same way as native databases, so we should
select stream merger if possible. For different SQL statements,
we take different actions.

(1) Iteration. For iteration statements (e.g., SELECT *
FROM t_user), we adopt stream merger, and simply iterate
the elements of each database cursor one by one.

(2) Order-By. If the statement contains ORDER BY (e.g.,
SELECT * FROM t_user ORDER BY name), as the re-
sult set returned by each data source is ordered, we adopt

t_score2

scorename

John

Tom

Mary

99

89

70

t_score0

scorename

Jerry

Tom

Mary

90

80

100

t_score2

scorename

John

Tom

Mary

99

89

70

t_score1

scorename

Jerry

Tom

John

95

75

85
SELECT name, SUM(score) FROM

t_score GROUP BY name ORDER BY name

t_score2

scorename

John

Tom

Mary

99

89

70

PriorityQueue (ordered by the first names)

t_score0

scorename

Jerry

Tom

Mary

90

80

100

t_score1

scorename

Jerry

Tom

John

95

75

85

t_score0

scorename

Jerry

Tom

Mary

90

80

100

PriorityQueue (ordered by the first names)

t_score1

scorename

Jerry

Tom

John

95

75

85

PriorityQueue (ordered by the first names)

(a) Data Records in Data Sources

t_score2

scorename

John

Tom

Mary

99

89

70

t_score0

scorename

Tom

Mary

Jerry

100

90

80

t_score1

scorename

Jerry

John

Tom

95

85

75

(b) Get (Jerry, 185) (c) Get (John, 174) (c) Get (Mary, 169)

Fig. 7. Example of Group-By Result Merger.

Group
ResultSet

Create
Execution Unit

Get
Connection

Lock Data Source

Route &
Rewrite Result

P
re

pa
ra

ti
on

P

ha
se

E
xe

c.

P
ha

se

Group Execute Send Event
Execute Result

(Stream||Memory)

if θ > 1 &&
Memory Strictly

Fig. 8. SQL Executor.

stream merger to combine these result sets into one using
multiway merge algorithm [54].

(3) Group-By. If the statement contains both GROUP BY
and ORDER BY, and the group-by item and order-by item
are the same (e.g., SELECT name, SUM(score) FROM
t_score GROUP BY name ORDER BY name), we can
use stream merger, as the data records in a group are all in the
first places that the cursors point to. For example, Figure 7(a)
shows the data records in the data sources. After executing the
query in each data source, we merge the result sets based on
multiway merge algorithm [54]. We resort to a priority queue,
and visit the result sets through database cursors. In Fig. 7(b),
we scan the pointed data records (marked orange) from left to
right and accumulate the scores until the name is not “Jerry”.
After output “(Jerry, 185)”, the related cursors move to the
next, and the order of result sets is adjusted. The previous
steps are repeated until all data records are visited, as shown
in Fig. 7(c) and Fig. 7(d).

If the group-by item and order-by item are not the same, we
cannot merge the result sets using stream merger, as the data
records in a group are not always pointed by the cursors. In this
case, we must use memory merger. If there is no ORDER BY in
the GROUP BY statement, to use stream merger, SQL rewriter
will intelligently add an ORDER BY item to the statement, as
discussed in Section VI-C.

(4) Aggregation. We can use both stream merger and mem-
ory merger for aggregation statements. There are three types of
aggregation functions: 1) Comparison Aggregation Functions
(e.g., MAX and MIN). We compare all result sets and return the
maximum or minimum value directly; 2) Summation Aggre-
gation Functions (e.g., SUM and COUNT). We accumulate or
count all result set data; 3) Average Aggregation Function (i.e.,
AVG). Since (AVG(T1)+AVG(T2))/2 is not always equal to
(SUM(T1)+SUM(T2))/(COUNT(T1)+COUNT(T2)), where T1

and T2 are two result sets, for average aggregation function,
we will rewrite it using summation aggregation functions.

(5) Pagination. For memory merger, we load all result data
into memory and take the corresponding data directly. For
stream merger, we iterate the result data, discard the data
before “offset”, and return the final result to user applications.

VII. ADAPTORS AND APPLICATIONS

This section first describes the two adaptors, and then gives
two applications developed based on ShardingSphere.
A. Adaptors
ShardingSphere-JDBC. ShardingSphere-JDBC can be re-
garded as an enhanced JDBC driver. It encapsulates the entire
SQL engine and other features provided by ShardingSphere,
and is fully compatible with JDBC and all kinds of ORM (Ob-
ject Relational Mapping) frameworks, such as Hibernate [55]
and MyBatis [56]. This is to say, ShardingSphere-JDBC can
be used wherever JDBC is used.

As shown in Fig. 4, ShardingSphere-JDBC is integrated into
business code as a “jar” package. Since the applications using
ShardingSphere-JDBC connect to data sources directly, the
performance could be very high.
ShardingSphere-Proxy. ShardingSphere-Proxy is a proxy
server, which forwards the requests from applications to data
sources. It provides a connection pool, thus different applica-
tions and different queries can share the same connection.

ShardingSphere-Proxy disguises itself as a MySQL or Post-
greSQL database by implementing their protocols. As a result,
it is transparent to application developers, and supports any
programming language. Besides, database administrators can
connect to ShardingSphere-Proxy through MySQL Workbench
or Navicat, which makes the maintenance work much easier.

Because it takes some time to forward the requests, the
performance of ShardingSphere-Proxy is lower than that of
ShardingSphere-JDBC. However, we can deploy both of them
in a single system, where they share the same Governor. In
this way, we can make full use of their respective strengths.
B. Applications

More than 170 companies all over the world announce that
they are using ShardingSphere. Here are two examples:
JD Baitiao. JD Baitiao is an advanced credit payment product
developed by JD.com [1], one of the biggest E-commerce
companies in China. Users can use JD Baitiao to pay for
online shopping. With the development of E-commerce, JD
Baitiao has to face huge pressure, especially during shopping
festivals. For example, its transaction volume exceeded 100
million in 10 seconds in 2019-11-11. Although the JD Baitiao
team upgraded its architecture three times between 2014 and
2017, they distributed such huge amount of visiting traffic in
their business code, which made the logic very complex. Since
2018, the JD Baitiao team has adopted ShardingSphere for
data sharding. They used hash sharding algorithm on user IDs
to avoid the hot access issue. After data sharding, the number
of data nodes reached nearly 10,000. ShardingSphere made

JD Baitiao more scalable by simply adding more machines,
and let its developers focus more on their business logic. This
usage scenario was recorded as an official MySQL case [57].
China Telecom BestPay. China Telecom Corporation [58],
the largest fixed-line service and the third largest mobile
telecommunication provider in China, developed an applica-
tion called BestPay to provide handy service to the public.
It covers nearly 400 main cities in China, and has 500
million users and 10 million business cooperators. In 2019,
the BestPay team held a marketing event, aimed at enhancing
the user activity and the company’s brand. In this event, the
data was stored in a single MySQL table, which resulted
in more than 150ms average response time and 4% query
failure rate. To solve this issue, they utilized ShardingSphere
to split the data into two MySQL databases in two servers
using merchant code%2, and in each database, the data was
further split horizontally by month. As a result, there were
no more than 1 billion entries in a table, and the response
time was reduced to less than 50ms. ShardingSphere helped
BestPay not only improve the service quality, but also reduce
the development costs.

VIII. EVALUATIONS

A. Datasets and Experimental Settings
Datasets. We use two datasets to evaluate the performance of
ShardingSphere: 1) Sysbench [59], a famous database bench-
marking tool that provides a table allowing users to adjust its
data volume. As the Sysbench requester is implemented with
C language, we write a Java version using ShardingSphere-
JDBC or JDBC [60]. 2) TPCC [61], another widely-used
OLTP benchmark that simulates several types of transactions
used frequently by a shop. Its ten tables are organized with
warehouses (about 600,000 entries per warehouse).
Baselines. We compare ShardingSphere with eight systems
in terms of TPS (Transactions Per Second), the average
response time (AvgT), the 99th percentile response time
(99T) for Sysbench and the 90th percentile response time
(90T) for TPCC (note that the default percentile of Sys-
bench and TPCC are 99th and 90th, respectively). These
systems are: 1) MySQL v5.7.26 (MS) and PostgreSQL
v10.17 (PG), which are typical relational databases; 2) Vitess
v12.0.0 [16] and Citus v9.0.0 [17], which are sharding mid-
dlewares on MySQL and PostgreSQL, respectively; 3) TiDB
v5.2.0 [7] and CockroachDB v21.1.11 [8] (CRDB), which
are two representative new architecture databases; 4) Au-
rora MySQL v2.07.2 (AuroraMS) and Aurora PostgreSQL
v4.2 (AuroraPG), which are DBaaS databases [39, 40] over
MySQL v5.7 and PostgreSQL v10.17 in Amazon cloud,
respectively. We do not compare with ProxySQL [18] be-
cause it routes requests based on string regular expression
that cannot support the sharding rules in our experimental
settings. SSJMS and SSJPG are ShardingSphere-JDBC on
MySQL and PostgreSQL, respectively. SSPMS and SSPPG

are ShardingSphere-Proxy on MySQL and PostgreSQL, re-
spectively. All experimental codes are publicly released [60].
Settings. We use Sysbench as the default dataset, whose

TABLE II
PARAMETER SETTINGS OF SYSBENCH (DEFAULT VALUES ARE IN BOLD)

Parameters Settings

Scenarios Point Select, Read Only, Write Only, Read Write,
Update Index, Update Non-index, Delete

Data Sizes (million) 20, 40, 60, 80, 100, 150, 200
Concurrencies 1, 20, 100, 200, 500
Data Servers 1, 3, 5, 7, 9

Transaction Types Local, BASE, XA
MaxCon 1, 5, 10, 15, 20

parameter settings are shown in Table II. For most exper-
iments, we use a cluster of 12 virtual servers in Huawei
cloud [62], where each server is equipped with CentOS 7.1
64bit, 32-vCore CPU, 64GB RAM and 1TB disk. To reduce
the effect of network IOs, we enable the Linux Multiqueue
Networking [63] for each server. For Aurora experiments, we
use 5 virtual servers in Amazon cloud [64], where each server
is equipped with Red Hat Enterprise Linux 8.3 64bit, 8-vCore
CPU, 64 GB RAM and 100GB SSD. Each server runs at most
one data source. The requester and ShardingSphere-Proxy are
deployed in two separate servers, respectively. For MS and
PG, we store all data in a single data source. For Sysbench,
we shard the data into multiple data sources, and in each data
source, the data is further sharded into 10 tables. For TPCC,
we shard all tables into 5 data sources, and the biggest table
bmsql_order_line is further horizontally sharded into 10
tables in each data source.
B. Comparison with Baselines
Comparison using Sysbench. Table III presents the perfor-
mance of distributed systems in different Sysbench scenarios.
We can see that: 1) In terms of the three metrics, the SS-
based systems always perform the best in all scenarios. For
example, the TPS of SSJMS in “Read Write” scenario achieves
19953, which is about five times of the best other system TiDB
(3877). 2) In most cases, SSJMS and SSJPG perform better
than SSPMS and SSPPG, respectively, because the requests of
SSJ-based systems can be directly sent to the underlying data
sources, but those of SSP-based systems are forwarded by the
proxy server, which takes some time. 3) The performances
of SS-based systems are relatively consistent in both MySQL
and PostgreSQL, which verifies the generalization ability of
ShardingSphere. 4) All systems show different performances
in different scenarios. It is intuitive because different scenarios
need to retrieve different amounts of data. The “Read Write”
scenario performs the worst, as it will start a transaction. Since
“Read Write” scenario is the most common in applications, we
use it as the default scenario.

Aurora stores its data in a distributed storage service with
SSDs, and processes requests in a single virtual server. To
this end, in this set of experiments, we only use one virtual
server for ShardingSphere and its underlying data stores.
Besides, we only use 20 million records in Sysbench as
MS throws an exception when we load 40 million records
in our settings. As shown in Table IV, 1) AuroraMS and
AuroraPG perform better than MS and PG, respectively, as the
storage power of Aurora can be seen as unlimited, and Aurora
pushes many computations to the storage layer. 2) Although

TABLE III
COMPARISON WITH DISTRIBUTED SYSTEMS IN DIFFERENT SCENARIOS (SYSBENCH)

System Point Select Read Only Write Only Read Write Update Index Update Non-index Delete
TPS 99T AvgT TPS 99T AvgT TPS 99T AvgT TPS 99T AvgT TPS 99T AvgT TPS 99T AvgT TPS 99T AvgT

SSJMS 250929 1.32 0.8 50367 4.93 3.97 21163 24.58 9.45 19953 32.54 10.03 50736 14.82 3.95 50632 15.06 3.95 51843 14.9 3.86
SSPMS 185154 2.54 1.08 13165 22.69 15.19 14463 31.37 13.82 7959 48.09 25.12 46207 15.74 4.32 47130 15.09 4.24 49049 14.64 4.07
Vitess 155797 4.91 1.28 11806 24.38 16.94 5189 167.44 38.51 3175 189.93 67.87 NA NA NA 18638 74.46 10.73 13813 112.67 14.48
CRDB 49225 17.01 4.06 4350 71.83 45.97 2250 404.61 88.86 1611 442.73 124.1 2347 520.62 85.16 23249 38.25 8.6 8380 227.4 23.86
TiDB 141796 7.56 1.41 12140 27.66 16.47 4939 92.42 40.49 3877 101.13 51.58 12171 41.1 16.43 16819 27.17 11.89 27587 28.16 7.25

SSJPG 271562 1.49 0.74 171390 1.08 1.18 61015 15.04 3.28 54580 14.63 3.67 100187 13.46 2 156226 12.78 1.28 174267 12.15 1.15
SSPPG 180357 2.49 1.11 12055 24.09 16.58 25474 19.65 7.85 9121 36.67 21.91 94429 13.94 2.12 138355 12.23 1.45 156271 11.24 1.28

Citus 51929 12.52 3.85 4288 73.13 46.62 6750 223.34 29.62 3129 277.21 63.89 29584 34.33 6.76 31838 21.11 6.28 37445 17.32 5.34
• 99T, 90T and AvgT are measured in milliseconds, and the best values are marked in bold. The same below. • Vitess does not support updating indexes.

TABLE IV
COMPARISON WITH STANDALONE SYSTEMS (SYSBENCH)

System TPS 99T AvgT System TPS 99T AvgT
MS 574 1401.61 348.55 PG 1287 337.94 155.27

SSJMS 4751 152.75 42.27 SSJPG 3674 224.11 54.61
SSPMS 380 601.29 555.04 SSPPG 333 816.63 600.23

AuroraMS 621 1533.66 289.13 AuroraPG 2043 150.29 97.89

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

SSJ
M

S

SSJ
PG

SSP
M

S

SSP
PG

Vitess
Citus

TiDB

T
P

S
 (

×
1

0
0

0
)

(a) TPS VS Systems.

101

102

103

104

SSJ
MS

SSJ
PG

SSP
MS

SSP
PG

Vitess
Citus

TiDB

90
T

 (
m

s)

(b) 90T VS Systems.

Fig. 9. Comparison with Distributed Systems (TPCC).
Aurora-based systems perform better than the corresponding
SSP-based systems, SSJ-based systems usually perform the
best in terms of TPS and AvgT. Aurora may encounter the
network bottleneck for its separation of compute and storage.
3) Although MS uses the same resource (a single server) with
SSJMS , SSJMS performs much better than MS in terms of all
three metrics. A similar thing happens between SSJPG and
PG. This is because ShardingSphere shards the data into 10
smaller tables. Requests on smaller tables are much faster.

TPS and AvgT are consistent in both Table III and Table IV,
i.e., if a system has a higher TPS, it usually has a smaller
AvgT. Besides, comparing AvgT, 99T or 90T is more critical.
To this end, in the following we do not present AvgT.
Comparison using TPCC. We also conduct a set of experi-
ments for the distributed systems using TPCC with 200 ware-
houses. Although TiDB provides its own TPCC version with
many optimizations for itself, we adopt the native TPCC for
fairness. TPCC provides five scenarios, and the proportion of
each scenario is fixed, so we only give the overall performance,
and take the accumulated 90T of all scenarios as the final
time. As shown in Fig. 9, although SSP-based systems have
the relatively worse performance than Vitess or Citus, SSJ-
based systems perform the best as they have the biggest TPS
and the smallest response time. TiDB takes the most time
among all the systems, as it spends 1.61s in the “Delivery”
scenario. CRDB runs error with the native TPCC. It shows
similar performance with TiDB according to [7], thus we infer
that its performance is worse than ours.

 0

 10

 20

 30

 40

 50

 60

20 40 60 80 100 150 200

T
P

S
 (

×
1

0
0

0
)

Data Size (million)

SSJMS
SSJPG

SSPMS

SSPPG
TiDB

(a) TPS VS Data Sizes.

10
1

10
2

10
3

20 40 60 80 100 150 200

9
9

T
 (

m
s)

Data Size (million)

SSJMS
SSJPG

SSPMS

SSPPG
TiDB

(b) 99T VS Data Sizes.

Fig. 10. Different Data Sizes (Sysbench).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

1 100 200 500

T
P

S
 (

×
1

0
0

0
)

Threads

SSJMS
SSJPG

SSPMS

SSPPG
TiDB

(a) TPS VS Concurrency.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

1 100 200 500

9
9

T
 (

m
s)

Threads

SSJMS
SSJPG

SSPMS

SSPPG
TiDB

(b) 99T VS Concurrency.
Fig. 11. Different Concurrencies (Sysbench).

C. Test of Scalability
To test the scalability of ShardingSphere, we carry out a set

of experiments with different data sizes, request concurrencies
and data servers using Sysbench. Here, among the distributed
baselines, we only present the performance of TiDB, as TiDB
exhibits the best performance in “Read Write” scenario among
all baselines according to Table III.
Different Data Sizes. As shown in Fig. 10, with the data size
increasing from 20 million to 100 million, the performance of
all presented systems keeps relatively stable. However, if the
data size still increases to 200 million, all systems produce
less TPS and take more 99T. Most systems store their data in
a tree structure. More data will lead to a higher tree structure.
Therefore, it will access the disks more times. SSJ-based
systems always perform the best in all data sizes.
Different Concurrencies. Figure 11 shows that, with more
request threads, the TPS of all systems first increases and then
keeps stable, while their 99T first keeps stable but increases
sharply when the number of threads is more than 200. This
is because when the number of threads is small, the systems
are able to respond to all requests. But if the concurrency is
greater than a threshold, some requests have to wait for the
resources. Again, SSJ-based systems perform the best in terms
of TPS among all systems for different concurrencies.
Different Data Servers. Figure 12 depicts the performance

 0

 10

 20

 30

 40

 50

 60

 70

1 3 5 7 9

T
P

S
 (

×
1

0
0

0
)

Data Servers

SSJMS
SSJPG

SSPMS

SSPPG
TiDB

(a) TPS VS Data Servers.

 0

 50

 100

 150

 200

1 3 5 7 9

9
9

T
 (

m
s)

Data Servers

SSJMS
SSJPG

SSPMS

SSPPG
TiDB

(b) 99T VS Data Servers.

Fig. 12. Different Data Servers (Sysbench).

 0

 10

 20

 30

 40

 50

 60

SSJMS SSJPG SSPMS SSPPG

T
P

S
 (

×
1

0
0

0
)

Systems

Local
BASE

XA

(a) TPS VS Transaction Type.

 0

 50

 100

 150

 200

 250

 300

 350

SSJMS SSJPG SSPMS SSPPG

9
9

T
 (

m
s)

Systems

Local
BASE

XA

(b) 99T VS Transaction Type.

Fig. 13. Effects of Transaction Types (Sysbench).

with different number of data servers. Here, TiDB is not
tested in one data server because it needs at least three data
servers for Raft consensus. As shown in Fig. 12(a), with
more data servers, the TPS of SSJ-based systems increases.
Because with more data servers, the number of data records
in each data source is smaller, which can improve the overall
TPS. However, for SSP-based systems, the TPS first increases
slightly, and then keeps stable when the number of data servers
is greater than 3. There could be for two reasons. First, we
only employ one proxy server, which could be one bottleneck
(we can deploy more proxy servers to address this issue).
Second, with more data servers, the network could be another
bottleneck. Similar things can be seen in Fig. 12(b), where the
99T first drops and then keeps stable or even increases slightly
with more data servers.

D. Effects of Configurations

Effects of Transaction Types. Figure 13 presents the effects
of three types of transactions. We can see that local transaction
always performs the best in terms of both TPS and 99T. XA
transaction performs worse than local transaction because local
transaction adopts 1PC and does not wait the underlying data
sources to respond, while XA needs 2PC to guarantee strong
consistency. It is interesting to see that BASE transaction
performs worse than XA transaction. There could be two
reasons. First, in our settings, the requests belong to short
transactions, which cannot reflect the advantages of BASE
transaction. Second, to be compatible with relational database
protocols, we let the results returned synchronously for BASE
transaction, which also hurts its performance.
Effects of Binding Table. To verify the effects of binding
table, we conduct a set of experiments by joining two the same
logical tables. Each logical table contains 20 million records,
and is split using the default sharding strategy. “Common”
means that the two tables do not have binding relationship. As
shown in Fig. 14, the performance of binding tables is about

 0

 5

 10

 15

 20

 25

 30

SSJMS SSJPG SSPMS SSPPG

T
P

S
 (

×
1

0
0

0
)

Systems

Common
Binding

(a) TPS VS Binding Table.

0

200

400

600

800

1000

1200

1400

SSJMS SSJPG SSPMS SSPPG

99
T

 (
m

s)

Systems

Common
Binding

(b) 99T VS Binding Table.

Fig. 14. Effects of Binding Table (Sysbench).

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

1 5 10 15 20

T
P

S
 (

×
1

0
0

0
)

MaxCon

SSJMS
SSJPG

SSPMS
SSPPG

(a) TPS VS MaxCon.

 0

 1

 2

 3

 4

 5

1 5 10 15 20

9
9
T

 (
m

s)

MaxCon

SSJMS
SSJPG

SSPMS
SSPPG

(b) 99T VS MaxCon.

Fig. 15. Effects of MaxConnectionSizePerQuery (Sysbench).

10 times better than non-binding tables in terms of TPS.
Effects of MaxCon. In this experiment, we only use one
thread to avoid the impact of concurrent access (the CPU
cores will act as the bottleneck if there are more threads), and
perform a range query. As shown in Fig. 15, the performance
of all SS-based systems gets better if MaxCon increases from
1 to 5. However, their performance keeps stable if MaxCon
increases further. If MaxCon is small, it tends to select the
connection strictly mode and memory merger. As the range
query will produce multiple routed SQLs, these routed SQLs
have to be executed one by one. Increasing MaxCon enables
to execute multiple routed SQLs at the same time. However,
if MaxCon increases further, it tends to select the memory
strictly mode and stream merger, the bottleneck should be the
underlying data sources and network transmission.

IX. CONCLUSION AND FUTURE WORKS

This paper presents the open-source data sharding system
Apache ShadingSphere, which lets users use sharded databases
like one database. Extensive experiments are conducted based
on two famous benchmarking tools, verifying that the perfor-
mance of ShardingSphere is better than other sharding systems
and new architecture databases in most cases in our settings.
More and more companies are using ShardingSphere for
their legacy critical applications. As for future work, we will
provide a “database+” production based on ShardingSphere,
and build an ecosystem with more pluggable features.

ACKNOWLEDGMENT

This paper is supported by the National Key R&D Pro-
gram of China (2019YFB2103201), the National Natural Sci-
ence Foundation of China (61976168, 61872050, 62172066,
42174050), and Entrepreneurship and Innovation Support Pro-
gram of Chongqing for Overseas Returnees, No. cx2021047.
We would like to thank all contributors and users (individuals
and companies) of Apache ShardingSphere.

REFERENCES
[1] “Jd.com,” https://en.wikipedia.org/wiki/JD.com, 2021.
[2] “Tmall,” https://en.wikipedia.org/wiki/Tmall, 2021.
[3] H. Garcia-Molina, J. D. Ullman, and J. Widom, Database system

implementation. Prentice Hall Upper Saddle River, NJ:, 2000, vol.
672.

[4] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A distributed
storage system for structured data,” ACM Transactions on Computer
Systems (TOCS), vol. 26, no. 2, pp. 1–26, 2008.

[5] L. George, HBase: the definitive guide: random access to your planet-
size data. ” O’Reilly Media, Inc.”, 2011.

[6] A. Pavlo and M. Aslett, “What’s really new with newsql?” ACM Sigmod
Record, vol. 45, no. 2, pp. 45–55, 2016.

[7] D. Huang, Q. Liu, Q. Cui, Z. Fang, X. Ma, F. Xu, L. Shen, L. Tang,
Y. Zhou, M. Huang et al., “Tidb: a raft-based htap database,” Proceed-
ings of the VLDB Endowment, vol. 13, no. 12, pp. 3072–3084, 2020.

[8] R. Taft, I. Sharif, A. Matei, N. VanBenschoten, J. Lewis, T. Grieger,
K. Niemi, A. Woods, A. Birzin, R. Poss et al., “Cockroachdb: The
resilient geo-distributed sql database,” in ACM SIGMOD 2020, 2020,
pp. 1493–1509.

[9] “yugabytedb,” https://www.yugabyte.com/, 2021.
[10] “Sql-92,” http://www.contrib.andrew.cmu.edu/˜shadow/sql/sql1992.txt,

2021.
[11] R. C. Seacord, “Replaceable components and the service provider in-

terface,” in International Conference on COTS-Based Software Systems.
Springer, 2002, pp. 222–233.

[12] E. Gamma, R. Helm, R. Johnson, J. Vlissides, and D. Patterns, Ele-
ments of reusable object-oriented software. Addison-Wesley Reading,
Massachusetts, 1995, vol. 99.

[13] “Apache shardingsphere,” https://github.com/apache/shardingsphere,
2021.

[14] “Mysql proxy,” https://github.com/mysql/mysql-proxy, 2021.
[15] “Maxscale,” https://github.com/mariadb-corporation/MaxScale, 2021.
[16] “Vitess,” https://github.com/vitessio/vitess, 2021.
[17] “Citus,” https://github.com/citusdata/citus, 2021.
[18] “Proxysql,” https://github.com/sysown/proxysql, 2021.
[19] “Goldendb,” https://www.zte.com.cn/global/products/202003190856/

202003190858/201707311038, 2021.
[20] “Tdsql-mysql,” https://intl.cloud.tencent.com/product/dcdb, 2021.
[21] R. Li, H. He, R. Wang, Y. Huang, J. Liu, S. Ruan, T. He, J. Bao, and

Y. Zheng, “Just: Jd urban spatio-temporal data engine,” in ICDE 2020.
IEEE, 2020, pp. 1558–1569.

[22] R. Li, H. He, R. Wang, S. Ruan, T. He, J. Bao, J. Zhang, L. Hong,
and Y. Zheng, “Trajmesa: A distributed nosql-based trajectory data
management system,” TKDE, 2021.

[23] R. Li, H. He, R. Wang, S. Ruan, Y. Sui, J. Bao, and Y. Zheng, “Trajmesa:
A distributed nosql storage engine for big trajectory data,” in ICDE 2020.
IEEE, 2020, pp. 2002–2005.

[24] E. Brewer, “A certain freedom: thoughts on the cap theorem,” in Pro-
ceedings of the 29th ACM SIGACT-SIGOPS symposium on Principles
of distributed computing, 2010, pp. 335–335.

[25] S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services,” Acm Sigact News,
vol. 33, no. 2, pp. 51–59, 2002.

[26] E. Brewer, “Cap twelve years later: How the” rules” have changed,”
Computer, vol. 45, no. 2, pp. 23–29, 2012.

[27] K. Chodorow, MongoDB: the definitive guide: powerful and scalable
data storage. ” O’Reilly Media, Inc.”, 2013.

[28] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s highly available key-value store,” ACM SIGOPS operating
systems review, vol. 41, no. 6, pp. 205–220, 2007.

[29] A. Lakshman and P. Malik, “Cassandra: a decentralized structured
storage system,” ACM SIGOPS Operating Systems Review, vol. 44, no. 2,
pp. 35–40, 2010.

[30] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild et al., “Spanner:
Google’s globally distributed database,” ACM Transactions on Computer
Systems (TOCS), vol. 31, no. 3, pp. 1–22, 2013.

[31] J. Chen, S. Jindel, R. Walzer, R. Sen, N. Jimsheleishvilli, and M. An-
drews, “The memsql query optimizer: A modern optimizer for real-
time analytics in a distributed database,” Proceedings of the VLDB
Endowment, vol. 9, no. 13, pp. 1401–1412, 2016.

[32] A. Kemper and T. Neumann, “Hyper: A hybrid oltp&olap main memory
database system based on virtual memory snapshots,” in ICDE 2011.
IEEE, 2011, pp. 195–206.

[33] J. Shute, M. Oancea, S. Ellner, B. Handy, E. Rollins, B. Samwel,
R. Vingralek, C. Whipkey, X. Chen, B. Jegerlehner et al., “F1-the fault-
tolerant distributed rdbms supporting google’s ad business,” 2012.

[34] J. Shute, R. Vingralek, B. Samwel, B. Handy, C. Whipkey, E. Rollins,
M. Oancea, K. Littlefield, D. Menestrina, S. Ellner et al., “F1: A
distributed sql database that scales,” 2013.

[35] J. Yang, I. Rae, J. Xu, J. Shute, Z. Yuan, K. Lau, Q. Zeng, X. Zhao,
J. Ma, Z. Chen et al., “F1 lightning: Htap as a service,” Proceedings of
the VLDB Endowment, vol. 13, no. 12, pp. 3313–3325, 2020.

[36] M. Freels, “Faunadb: An architectural overview,” 2018.
[37] J. Zhou, M. Xu, A. Shraer, B. Namasivayam, A. Miller, E. Tschannen,

S. Atherton, A. J. Beamon, R. Sears, J. Leach et al., “Foundationdb: A
distributed unbundled transactional key value store,” in ACM SIGMOD
2021, 2021, pp. 2653–2666.

[38] D. F. Bacon, N. Bales, N. Bruno, B. F. Cooper, A. Dickinson, A. Fikes,
C. Fraser, A. Gubarev, M. Joshi, E. Kogan et al., “Spanner: Becoming
a sql system,” in ACM SIGMOD 2017, 2017, pp. 331–343.

[39] A. Verbitski, A. Gupta, D. Saha, M. Brahmadesam, K. Gupta, R. Mittal,
S. Krishnamurthy, S. Maurice, T. Kharatishvili, and X. Bao, “Amazon
aurora: Design considerations for high throughput cloud-native relational
databases,” in ACM SIGMOD 2017, 2017, pp. 1041–1052.

[40] A. Verbitski, A. Gupta, D. Saha, J. Corey, K. Gupta, M. Brahmadesam,
R. Mittal, S. Krishnamurthy, S. Maurice, T. Kharatishvilli et al., “Ama-
zon aurora: On avoiding distributed consensus for i/os, commits, and
membership changes,” in ACM SIGMOD 2018, 2018, pp. 789–796.

[41] “Jdbc,” https://en.wikipedia.org/wiki/Java Database Connectivity, 2021.
[42] G. Li, X. Zhou, J. Sun, X. Yu, Y. Han, L. Jin, W. Li, T. Wang, and

S. Li, “opengauss: An autonomous database system,” Proceedings of
the VLDB Endowment, vol. 14, no. 12, pp. 3028–3042, 2021.

[43] “Sharding algorithms of apache shardingsphere,”
https://shardingsphere.apache.org/document/current/en/dev-
manual/sharding/, 2021.

[44] “The open group,” https://www.opengroup.org/, 2021.
[45] C. Specification, Distributed Transaction Processing: the XA Specifica-

tion. X/Open, 1991.
[46] D. Pritchett, “Base: An acid alternative: In partitioned databases, trading

some consistency for availability can lead to dramatic improvements in
scalability.” Queue, vol. 6, no. 3, pp. 48–55, 2008.

[47] H. Garcia-Molina and K. Salem, “Sagas,” ACM Sigmod Record, vol. 16,
no. 3, pp. 249–259, 1987.

[48] G. Pardon and C. Pautasso, “Atomic distributed transactions: A restful
design,” in Proceedings of the 23rd International Conference on World
Wide Web, 2014, pp. 943–948.

[49] “Seata,” https://github.com/seata/seata, 2021.
[50] Z. Jiang, Y. Zhang, J. Wang, C. Li, and C. Xing, “Tl: A high performance

buffer replacement strategy for read-write splitting web applications,” in
Asia-Pacific Web Conference. Springer, 2014, pp. 478–484.

[51] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper: Wait-free
coordination for internet-scale systems.” in USENIX annual technical
conference, vol. 8, no. 9, 2010.

[52] “Orchestrator,” https://github.com/openark/orchestrator, 2021.
[53] T. J. Parr and R. W. Quong, “Antlr: A predicated-ll (k) parser generator,”

Software: Practice and Experience, vol. 25, no. 7, pp. 789–810, 1995.
[54] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction

to algorithms. MIT press, 2009.
[55] “Hibernate,” https://hibernate.org/, 2021.
[56] “Mybatis,” https://blog.mybatis.org/, 2021.
[57] “Mysql customer: Jd.com,” https://www.mysql.com/customers/view/?id=1461,

2021.
[58] “China telecom corporation,” https://en.wikipedia.org/wiki/China

Telecommunications Corporation, 2021.
[59] A. Kopytov, “Sysbench: a system performance benchmark,”

http://sysbench.sourceforge.net/, 2004.
[60] “Ss4icde,” http://ss4icde.urban-computing.com, 2021.
[61] S. T. Leutenegger and D. Dias, “A modeling study of the tpc-c

benchmark,” ACM Sigmod Record, vol. 22, no. 2, pp. 22–31, 1993.
[62] “Huawei cloud,” https://www.huaweicloud.com/intl/en-us/, 2021.
[63] Z. Yi and P. Waskiewicz, “Enabling linux network support of hardware

multiqueue devices,” in Proc. of the 2007 Linux Symposium. Citeseer,
2007, pp. 305–310.

[64] “Amazon cloud,” https://aws.amazon.com/, 2022.

